Mining Emerging Gradual Patterns
نویسندگان
چکیده
Mining emerging patterns aims at contrasting data sets and identifying itemsets that characterise a data set by contrast to a reference data set, so as to capture and highlight their differences. This paper considers the case of emerging gradual patterns, to extract discriminant attribute co-variations. It discusses the specific features of these gradual patterns and proposes to transpose an efficient border-based algorithm, justifying its applicability to the gradual case. Illustrative results obtained from a UCI data set are described.
منابع مشابه
High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملMining Closed Gradual Patterns
With the steady development of the computing tools, we attended last three decades a considerable increase of the quantity of data stored in databases. So, extracting knowledge from this data is of paramount importance. Data mining is becoming an inescapable tool to reach this goal. Association rule extraction is one of the important tasks in data mining. This powerful technique has a wide rang...
متن کاملEfficient Parallel Mining of Gradual Patterns on Multicore Processors
Mining gradual patterns plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual patterns highlight complex order correlations of the form “The more/less X, the more/less Y”. Only recently algorithms have appeared to mine efficiently gradual rules. How...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملPGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns
Gradual patterns highlight complex order correlations of the form “The more/less X, the more/less Y”. Only recently algorithms have appeared to mine efficiently gradual rules. However, due to the complexity of mining gradual rules, these algorithms cannot yet scale on huge real world datasets. In this paper, we propose to exploit parallelism in order to enhance the performances of the fastest e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015